Your browser doesn't support javascript.
Шоу: 20 | 50 | 100
Результаты 1 - 7 de 7
Фильтр
1.
Antiviral Res ; 209: 105475, 2022 Nov 21.
Статья в английский | MEDLINE | ID: covidwho-2240582

Реферат

SARS-CoV-2 is the causative agent of the immune response-driven disease COVID-19 for which new antiviral and anti-inflammatory treatments are urgently needed to reduce recovery time, risk of death and long COVID development. Here, we demonstrate that the immunoregulatory kinase p38 MAPK is activated during viral entry, mediated by the viral spike protein, and drives the harmful virus-induced inflammatory responses. Using primary human lung explants and lung epithelial organoids, we demonstrate that targeting p38 signal transduction with the selective and clinically pre-evaluated inhibitors PH-797804 and VX-702 markedly reduced the expression of the pro-inflammatory cytokines IL6, CXCL8, CXCL10 and TNF-α during infection, while viral replication and the interferon-mediated antiviral response of the lung epithelial barrier were largely maintained. Furthermore, our results reveal a high level of drug synergism of both p38 inhibitors in co-treatments with the nucleoside analogs Remdesivir and Molnupiravir to suppress viral replication of the SARS-CoV-2 variants of concern, revealing an exciting and novel mode of synergistic action of p38 inhibition. These results open new avenues for the improvement of the current treatment strategies for COVID-19.

2.
Angiogenesis ; 2022 Aug 11.
Статья в английский | MEDLINE | ID: covidwho-2234027

Реферат

BACKGROUND: Recent studies have highlighted Coronavirus disease 2019 (COVID-19) as a multisystemic vascular disease. Up to 60% of the patients suffer from long-term sequelae and persistent symptoms even 6 months after the initial infection. METHODS: This prospective, observational study included 58 participants, 27 of whom were long COVID patients with persistent symptoms > 12 weeks after recovery from PCR-confirmed SARS-CoV-2 infection. Fifteen healthy volunteers and a historical cohort of critically ill COVID-19 patients (n = 16) served as controls. All participants underwent sublingual videomicroscopy using sidestream dark field imaging. A newly developed version of Glycocheck™ software was used to quantify vascular density, perfused boundary region (PBR-an inverse variable of endothelial glycocalyx dimensions), red blood cell velocity (VRBC) and the microvascular health score (MVHS™) in sublingual microvessels with diameters 4-25 µm. MEASUREMENTS AND MAIN RESULTS: Although dimensions of the glycocalyx were comparable to those of healthy controls, a µm-precise analysis showed a significant decrease of vascular density, that exclusively affected very small capillaries (D5: - 45.16%; D6: - 35.60%; D7: - 22.79%). Plotting VRBC of capillaries and feed vessels showed that the number of capillaries perfused in long COVID patients was comparable to that of critically ill COVID-19 patients and did not respond adequately to local variations of tissue metabolic demand. MVHS was markedly reduced in the long COVID cohort (healthy 3.87 vs. long COVID 2.72 points; p = 0.002). CONCLUSIONS: Our current data strongly suggest that COVID-19 leaves a persistent capillary rarefication even 18 months after infection. Whether, to what extent, and when the observed damage might be reversible remains unclear.

3.
Front Immunol ; 13: 916512, 2022.
Статья в английский | MEDLINE | ID: covidwho-1911050

Реферат

Coronavirus disease 2019 (COVID-19) is a systemic disease associated with injury (thinning) of the endothelial glycocalyx (eGC), a protective layer on the vascular endothelium. The aim of this translational study was to investigate the role of the eGC-degrading enzyme heparanase (HPSE), which is known to play a central role in the destruction of the eGC in bacterial sepsis. Excess activity of HPSE in plasma from COVID-19 patients correlated with several markers of eGC damage and perfused boundary region (PBR, an inverse estimate of glycocalyx dimensions of vessels with a diameter 4-25 µm). In a series of translational experiments, we demonstrate that the changes in eGC thickness of cultured cells exposed to COVID-19 serum correlated closely with HPSE activity in concordant plasma samples (R = 0.82, P = 0.003). Inhibition of HPSE by a nonanticoagulant heparin fragment prevented eGC injury in response to COVID-19 serum, as shown by atomic force microscopy and immunofluorescence imaging. Our results suggest that the protective effect of heparin in COVID-19 may be due to an eGC-protective off-target effect.


Тема - темы
COVID-19 , Glucuronidase , Glycocalyx , COVID-19/metabolism , COVID-19/pathology , Glucuronidase/metabolism , Glycocalyx/metabolism , Glycocalyx/pathology , Heparin/pharmacology , Humans
4.
Angiogenesis ; 25(4): 503-515, 2022 11.
Статья в английский | MEDLINE | ID: covidwho-1899208

Реферат

AIMS: Although coronavirus disease 2019 (COVID-19) and bacterial sepsis are distinct conditions, both are known to trigger endothelial dysfunction with corresponding microcirculatory impairment. The purpose of this study was to compare microvascular injury patterns and proteomic signatures in COVID-19 and bacterial sepsis patients. METHODS AND RESULTS: This multi-center, observational study included 22 hospitalized adult COVID-19 patients, 43 hospitalized bacterial sepsis patients, and 10 healthy controls from 4 hospitals. Microcirculation and glycocalyx dimensions were quantified via intravital sublingual microscopy. Plasma proteins were measured using targeted proteomics (Olink). Coregulation and cluster analysis of plasma proteins was performed using a training-set and confirmed in a test-set. An independent external cohort of 219 COVID-19 patients was used for validation and outcome analysis. Microcirculation and plasma proteome analysis found substantial overlap between COVID-19 and bacterial sepsis. Severity, but not disease entity explained most data variation. Unsupervised correlation analysis identified two main coregulated plasma protein signatures in both diseases that strictly counteract each other. They were associated with microvascular dysfunction and several established markers of clinical severity. The signatures were used to derive new composite biomarkers of microvascular injury that allow to predict 28-day mortality or/and intubation (area under the curve 0.90, p < 0.0001) in COVID-19. CONCLUSION: Our data imply a common biological host response of microvascular injury in both bacterial sepsis and COVID-19. A distinct plasma signature correlates with endothelial health and improved outcomes, while a counteracting response is associated with glycocalyx breakdown and high mortality. Microvascular health biomarkers are powerful predictors of clinical outcomes.


Тема - темы
COVID-19 , Sepsis , Adult , Biomarkers/metabolism , Humans , Microcirculation , Proteome , Proteomics
5.
Viruses ; 13(11)2021 11 21.
Статья в английский | MEDLINE | ID: covidwho-1524179

Реферат

The COVID-19 pandemic is caused by the SARS CoV-2 virus and can lead to severe lung damage and hyperinflammation. In the context of COVID-19 infection, inflammation-induced degradation of the glycocalyx layer in endothelial cells has been demonstrated. Syndecan-1 (SDC-1) is an established parameter for measuring glycocalyx injury. This prospective, multicenter, observational, cross-sectional study analyzed SDC-1 levels in 24 convalescent patients that had been infected with SARS-CoV-2 with mild disease course without need of hospitalization. We included 13 age-matched healthy individuals and 10 age-matched hospitalized COVID-19 patients with acute mild disease course as controls. In convalescent COVID-19 patients, significantly elevated SDC-1 levels were detected after a median of 88 days after symptom onset compared to healthy controls, whereas no difference was found when compared to SDC-1 levels of hospitalized patients undergoing acute disease. This study is the first to demonstrate signs of endothelial damage in non-pre-diseased, convalescent COVID-19 patients after mild disease progression without hospitalization. The data are consistent with studies showing evidence of persistent endothelial damage after severe or critical disease progression. Further work to investigate endothelial damage in convalescent COVID-19 patients should follow.


Тема - темы
COVID-19/pathology , Glycocalyx/pathology , Syndecan-1/blood , COVID-19/metabolism , Cross-Sectional Studies , Endothelium, Vascular/pathology , Female , Glycocalyx/metabolism , Humans , Inflammation , Lung/pathology , Male , Middle Aged , Prospective Studies
6.
Med Klin Intensivmed Notfmed ; 116(6): 530-534, 2021 Sep.
Статья в Немецкий | MEDLINE | ID: covidwho-1349277
7.
Angiogenesis ; 24(1): 145-157, 2021 02.
Статья в английский | MEDLINE | ID: covidwho-871498

Реферат

RATIONALE: Pre-clinical and autopsy studies have fueled the hypothesis that a dysregulated vascular endothelium might play a central role in the pathogenesis of ARDS and multi-organ failure in COVID-19. OBJECTIVES: To comprehensively characterize and quantify microvascular alterations in patients with COVID-19. METHODS: Hospitalized adult patients with moderate-to-severe or critical COVID-19 (n = 23) were enrolled non-consecutively in this prospective, observational, cross-sectional, multi-center study. Fifteen healthy volunteers served as controls. All participants underwent intravital microscopy by sidestream dark field imaging to quantify vascular density, red blood cell velocity (VRBC), and glycocalyx dimensions (perfused boundary region, PBR) in sublingual microvessels. Circulating levels of endothelial and glycocalyx-associated markers were measured by multiplex proximity extension assay and enzyme-linked immunosorbent assay. MEASUREMENTS AND MAIN RESULTS: COVID-19 patients showed an up to 90% reduction in vascular density, almost exclusively limited to small capillaries (diameter 4-6 µm), and also significant reductions of VRBC. Especially, patients on mechanical ventilation showed severe glycocalyx damage as indicated by higher PBR values (i.e., thinner glycocalyx) and increased blood levels of shed glycocalyx constituents. Several markers of endothelial dysfunction were increased and correlated with disease severity in COVID-19. PBR (AUC 0.75, p = 0.01), ADAMTS13 (von Willebrand factor-cleaving protease; AUC 0.74, p = 0.02), and vascular endothelial growth factor A (VEGF-A; AUC 0.73, p = 0.04) showed the best discriminatory ability to predict 60-day in-hospital mortality. CONCLUSIONS: Our data clearly show severe alterations of the microcirculation and the endothelial glycocalyx in patients with COVID-19. Future therapeutic approaches should consider the importance of systemic vascular involvement in COVID-19.


Тема - темы
COVID-19/physiopathology , Endothelium, Vascular/physiopathology , Microcirculation , Aged , Area Under Curve , Cross-Sectional Studies , Female , Follow-Up Studies , Glycocalyx/chemistry , Healthy Volunteers , Humans , Inflammation , Intravital Microscopy , Kaplan-Meier Estimate , Male , Middle Aged , Perfusion , Prospective Studies , Treatment Outcome
Критерии поиска